An improved algorithm to reconstruct a binary tree from its inorder and postorder traversals

Authors

  • Henk Koppelaar Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
  • Niloofar Aghaieabiane Department of Engineering, School of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, the USA.
  • Peyman Nasehpour Golpayegan University of Technology, Department of Engineering Science, Golpayegan, Iran.
Abstract:

It is well-known that, given inorder traversal along with one of the preorder or postorder traversals of a binary tree, the tree can be determined uniquely. Several algorithms have been proposed to reconstruct a binary tree from its inorder and preorder traversals. There is one study to reconstruct a binary tree from its inorder and postorder traversals, and this algorithm takes running time of  $ BigO{emph{n}^2} $. In this paper, we present $ proc{InPos} $ an improved algorithm to reconstruct a binary tree from its inorder and postorder traversals. The running time and space complexity of the algorithm are an order of $ BigTheta{emph{n}} $ and $ BigTheta{emph{n}} $ respectively, which we prove to be optimal.  The $ proc{InPos} $ algorithm not only reconstructs the binary tree, but also it determines different types of the nodes in a binary tree; nodes with two children, nodes with one child, and nodes with no child. At the end, the $ proc{InPos} $ returns a matrix-based structure to represent the binary tree, and enabling  access to any structural information of the reconstructed tree in linear time with any given tree traversals.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A novel algorithm to determine the leaf (leaves) of a binary tree from its preorder and postorder traversals

Binary trees are essential structures in Computer Science. The leaf (leaves) of a binary tree is one of the most significant aspects of it. In this study, we prove that the order of a leaf (leaves) of a binary tree is the same in the main tree traversals; preorder, inorder, and postorder. Then, we prove that given the preorder and postorder traversals of a binary tree, the leaf (leaves) of a bi...

full text

Constructing a binary tree efficiently from its traversals

In this note we streamline an earlier algorithm for constructing a binary tree from its inorder and preorder traversals. The new algorithm is conceptually simpler than the earlier algorithms and its time complexity has a smaller constant factor.

full text

Iterative Method for Recreating a Binary Tree from its Traversals

Many reconstruction algorithms for binary tree have been discussed in this paper. A particular focus of this paper is on “A new Non-Recursive Algorithm for Reconstructing a Binary Tree from its Traversals”. The computation time required for executing the reconstruction algorithm are O(N) and space complexity is O(NlogN) where N is the number of nodes in the binary tree. This algorithm works wel...

full text

Reconstructing a Binary Tree from its Traversals in Doubly

We consider the following problem. For a binary tree T = (V; E) where V = f1; 2; :::; ng, given its inorder traversal and either its preorder or its postorder traversal, reconstruct the binary tree. We present a new parallel algorithm for this problem. Our algorithm requires O(n) space. The main idea of our algorithm is to reduce the reconstruction process to merging two sorted sequences. With ...

full text

the aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame

رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 49  issue 1

pages  93- 113

publication date 2017-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023